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On an overdetermined Neumann problem 'Ast Special

Carlos A. Berenstein

This note is a summary of recent results obtained jointly

with Paul Yang. The author would like to express his gratitude to

Professor S. Coen for the invitation to deliver this lecture at

the Universitt di Bologna.

Several questions In harmonic analysis, partial differential

equations and applied mathematics lead to the question of

0characterizing domains for which overdetermined boundary value

problems have solutions. Given the existence of an excellent

bibliography in [1] I will not attempt to trace the history of the

problem (D) and (N) introduced below, except to say that their

origins go back to the treatise (2] of Lord Rayleigh.

Let 0 be an open relatively compact subset of real analytic

Riemannian manifold M. Assume further that 80 is connected and
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of Lipshitz class., Whit can we say about 0 if any of the

following problems (D) or (N) has an eigenvalue a > 0?

Au +au-O0 in 0

(D) u - 0 and 8=l on 0

(overdetermined Dirichlet problem)

Au + au - 0 in 0
aU

(D) u - I and, - on ao

(overdetermined Neumann problem)

It Is remarkable that the existence of such an elgenvalue

already Implies that a0 is a real analytic submanifold of M (at

least if a0 is of class C2+C if M - Rn  or Hn - real

hyperbolic space - it is enough if a0 Is Lipschitz, this follows

from work of Cafarelli [3]. It is quite possible that this last

condition is always sufficient). In order to proceed any further

we have to Impose restrictions on both M and a. For instance,

If M - Rn (resp. 3n ) and a in (D) is the first eigenvalue of

Dirichlet problem, i.e. u > 0, then 0 - ball (resp. geodesic

ball). This follows from a theorem of Serrin [4]. A few other

cases are known [5], [6], (7] of the non-existence of elgenvalues

if M a Rn 0 a ball. On the otherhand, if K - Rn (resp. Hn)

and 0 - ball (resp. geodesic ball) then one can see that,

considering the radial elgenfunctions of the usual Dirichlet or

Neumann problems in the role of u, there are infinitely many

eigenvalues for (D) and for (N). Sometime ago I have proved in

R 2 that the converse was true [5], later I obtained the same

result with P. Yang in H 2[J. He have now:

Theorem t9] Let M - Rn(resp. Hn), the existence of infinitely

many eIgenvalues for either of the problems (D) or (N)

characterizes the balls (resp.geodesic balls) among all the



relatively compact domains Q with connected Lipshitz boundary.

Note that in the Poincar6 model F unit ball of Pn and

the geodesic balls are then euclidean balls.

It would seem to be natural to jump to the conclusion that

this theorem should remain true in all M. The following example

shows that one needs some caution.

a2 _2 +0+ 2 2 defined inExample Let u - u(x) 2 - • u-+

2n - 2n-1 eoebR V denote by v its restriction to M - S Denote by L

the Laplace operator in R2n, A the Laplace Beltraml operator in

M. It is well known they are related by

()L a 2n-18 +

ar 2  r r2

We also have

au Vu-.!- 2u
7 - r 

where the last identity holds by Euler's formula, u being

homogeneous of degree 2. Therefore

(2) a2u__ 2 au 2 ;u
8-r r r 2

It follows that

2u (2n-1) 2u + I
r r2  ru-Lu-O,

and the function v satisfies Av + 4n v - 0 on (r-1) - M.

Consider now the set 0 - connected component containing

(1,O.--,0) of Ix a M: u(x) > 0). Then on 80 we have v(x) - 0

and therefore a a 4n is the first eigenvalue of Dirichlet
By

problem for 0. We claim now that a- constant on 80. Note

that the (exterior) normal derivative is an operator tangent to

the sphere N. First, observe that (2) implies



(3) vu(x) . x 4f x e ao.

Since x is the normal vector to M in R 2n we have

x

Vu(x) 6 T 
M for x e 80. Therefore 

we have

(4) Vu(x) (x) • -n(x) if x C CO,

where n represents the unit exterior normal to 0 in M. We

only need to verify that IVu(x)l - constant when x 6 80. But

Vu(x) - 2(x1 ,-X2 '... x2n-l, -x2n )

and

() IvuI 2 = 41X1 2 - 4 if x CM,

which says that v satisfies:

Av + 4n v - 0 in 0

v>O in 0

(6) v- 0 on 80

" - 2 on 80.

Note that topologically 80 - Sn-l x Sn- I which shows that

Serrin's theorem fails on M. We want to show now that there are

Infinitely many solutions for both (D) and (N) in 0.

Let f be a twice differentiable function of a single real

variable and define

V(X): - f(u(x)).

Using again identity (2) we have

L - fv(u)lVu 2 + f'(u)Lu f"(u)41xl 2 - 4f(u) on M.

S89 . u , 1

- fV(u),j - 2f(u) 2f'iu)u on 4.

a2 0rul 2  2 Ou 2
- 4f"(u)U) f- -

a 2 2f, + (U)U 4f'(u)u2 + 2f'(u)u on M.r f ()
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Hence, on M,

Lo9 - 4f"(u) - 4f"(u)u 2+ 4nf'(u)u + Aip,

and

(7) Av + ao 4f-(u)(l-u2) 4nf* (u) u + af (u).

Therefore the equation Av + af 0 in 0 becomes the ordinary

differential equation

(8) 4(1-t 2 )f"(t) - 4ntf"(t) + af(t) - 0, 0 s t s 1

This equation has a regular singular point at end point t =1

Each eigenvalue a and sigenfunction of (8) satisfying

(9) f(l) bounded, f(0) - 0

provides an eigenvalue for (D) since

VO- f'(u)Vu

hence again VP*x - 0 on 00 and to check whether U- constant

we only need to compute IV-01 on 80. But

1VI2 - (f u 1U2- 4 (f'(u) )2'

which shows

(10) -*2f'(0) on 80.

(This Is different from zero since the elgenfunctions of (8) -(9)

satisfy f'(0) o 0) . This same computation shows that the

0 sigenfunctions of (8) satisfying

(11) f (1) bounded, f'(0) u 0,

will provide elgenfunctions 9p(x) for (N). This time -0 on

of he heoy f odinrydifferential equations that (8)-(9) and

(8)(10 hae ifintel may igenvalues, the domain 0 has

infinitely many sigenvalues for (D) and (N). Q is not even

topologically a geodesic ball in M.



I

On this note we leave the-reader to reflect on these

beautiful questions.
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